UDC 547.944/945

- N. N. Margvelashvili, O. E. Lasskaya, A. T. Kir'yanova, and O. N. Tolkachev

We have studied the composition of the alkaloids of <u>Corydalis vaginans</u> Royle, family Papaveraceae (habitat the Himalayas), introduced into the Botanical Garden of VILR [All-Union Scientific-Research Institute of Medicinal Plants]. We obtained the total alkaloids (1.4%) from the herbage by the dichloroethane method.

From the sulfate fraction we isolated a purified inactive base with the composition $C_{20}H_{13}NO_4 \cdot H_2O$, mp 266-267°C (ether), giving no depression of the melting point in admixture with sanguinarine [1]. From the strongly basic fraction we obtained a substance with the composition $C_{20}H_{19}NO_6$, mp 204-205°C (ethanol) which was identified by comparison with an authentic sample as protopine [2].

By crystallizing the combined alkaloids from ethanol we isolated a base with the composition $C_{20}H_{19}NO_6$, mp $204^{\circ}C$, $[\alpha]_D^{20}+36^{\circ}$ (c 1.8; chloroform) [3]. UV spectrum: λ_{max} (ethanol) 205, 240, 250 nm (log ϵ 4.81, 3.94, 3.91). The NMR spectrum (paraffin oil) showed absorption bands at 3450 and 3530 cm⁻¹ (OH). NMR spectrum, δ , ppm: 5.98 and 6.56 (s, 2 H, C_1 -H, C_4 -H); 4.8 and 5.72 (s, 2 H, H- C_9 -OH, H- C_{14} -OH); 6.85 (s, 1 H, C_5 -H); 2.52 (s, 3 H, N- C_{13}); 5.66 and 5.94 (s, 4 H, 2CH₂O₂). Mass spectrum: M⁺ 369, and strong peaks of ions with m/e 190, 192, and 206. When the base was acetylated with acetic anhydride in chloroform, a diacetyl derivative was obtained with the composition $C_{24}H_{23}NO_8$, mp 179°C. Its IR spectrum had an absorption band at 1710 cm⁻¹ (CH₃COO-). NMR spectrum, δ , ppm: 2.04 and 2.26 (s, 6 H, 2CH₃COO-); 1.81 (s, 3 H, N-CH₃); and 5.76 and 5.93 (q, 4 H, 2CH₂O₂). The information given shows that the spirobenzylisoquinoline alkaloid isolated is d-ochrobirine [4].

LITERATURE CITED

- 1. T. A. Henry, The Plant Alkaloids, 4th ed., J. A. Churchill, London (1949).
- 2. A. P. Orekhov, The Chemistry of the Alkaloids [in Russian], Moscow (1955), p. 493.
- 3. H. Bolt, Ergebnisse der Alkaloid-Chemie bis 1960, Akademieverlag, 348 (1961).
- 4. R. H. F. Manske and R. G. A. Rodrigo, Canad. J. Chem., 47, 3589 (1969).

All-Union Scientific-Research Institute of Medicinal Plants. Translated from Khimiya Prirodnykh Soedinenii, No. 6, p. 813, November-December, 1974. Original article submitted June 17, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.